Shadow Detection based on Colour Segmentation and Estimated Illumination

نویسندگان

  • Xiaoyue Jiang
  • Andrew J. Schofield
  • Jeremy L. Wyatt
چکیده

In this paper we show how to improve the detection of shadows in natural scenes using a novel combination of colour and illumination features. Detecting shadows is useful because they provide information about both light sources and the shapes of objects thereby illuminated. Recent shadow detection methods use supervised machine learning techniques with input from colour and texture features extracted directly from the original images (e.g. Lalonde et al. ECCV 2010, Zhu et al. CVPR 2010). It seems sensible to augment these with estimates of scene illumination, as can be obtained with an intrinsic image extraction algorithm. Intrinsic image extraction separates the illumination and reflectance components in a scene, and the resulting illumination maps contain robust intensity change features at shadow boundaries. In this paper, we make two main contributions. First we improve upon existing methods for extracting illumination maps. Second we show how to use these illumination maps together with colour segmentation to extend the Lalonde’s approach to shadow detection. Illumination maps are extracted using a steerable filter framework based on global and local correlations in low and high frequency bands respectively. The illumination and colour features so extracted are then input to a decision tree trained to detect shadow edges using AdaBoost. We tested variations of our proposed approach on two public databases of natural scenes. This study showed that our approach improves on that of Lalonde both in terms of sensitivity to shadow edges and rejection of false positives. Following Lalonde we show that our detection results are further improved by imposing an edge continuity constraint via a conditional random field (CRF) model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Chromatic shadow detection and tracking for moving foreground segmentation

Advanced segmentation techniques in the surveillance domain deal with shadows to avoid distortions when detecting moving objects. Most approaches for shadow detection are still typically restricted to penumbra shadows and cannot cope well with umbra shadows. Consequently, umbra shadow regions are usually detected as part of moving objects, thus affecting the performance of the final detection. ...

متن کامل

Object Detection in Digital Images under Non-Standardized Conditions Using Illumination and Shadow Filtering

In recent years, object detection has gained much attention and very encouraging research area in the field of computer vision. The robust object boundaries detection in an image is demanded in numerous applications of human computer interaction and automated surveillance systems. Many methods and approaches have been developed for automatic object detection in various fields, such as automotiv...

متن کامل

Alorithm for Shadow Detection in Real Colour Images

Shadow detection in real scene images is always a challenging but yet interesting area. Most shadow detection and segmentation methods are based on image analysis. This paper aimed to give a comprehensive and critical study of current shadow detection methods. Various approaches have been discussed related to shadow detection in images. The principles of these methods rely on intensity differen...

متن کامل

Shadow Segmentation and Shadow-Free Chromaticity via Markov Random Fields

We design an algorithm based on illuminant invariance theory to find shadow regions in a colour image. Shadows are caused by a local change in both the colour and the intensity of illumination. Using both chromaticity and intensity cues, an illuminant discontinuity measure is derived by which shadow edges can be locally identified. We model the problem of finding shadows by a Markov Random Fiel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011